skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guo, Xingzhi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Occupational identity concerns the self-image of an individual’s affinities and socioeconomic class, and directs how a person should behave in certain ways. Understanding the establishment of occupational identity is important to studywork-related behaviors. However, large-scale quantitative studies of occupational identity are difficult to perform due to its indirect observable nature. But profile biographies on social media contain concise yet rich descriptions about self- identity. Analysis of these self-descriptions provides powerful insights concerning how people see themselves and how they change over time.In this paper, we present and analyze a longitudinal corpus recording the self-authored public biographies of 51.18 million Twitter users as they evolve over a six-year period from 2015-2021. In particular, we investigate the social approval (e.g., job prestige and salary) effects in how people self-disclose occupational identities, quantifying over-represented occupations as well as the occupational transitions w.r.t. job prestige over time. We show that self-reported jobs and job transitions are biased toward more prestigious occupations. We also present an intriguing case study about how self-reported jobs changed amid COVID-19 and the subsequent Great Resignation trend with the latest full year data in 2022. These results demonstrate that social media biographies are a rich source of data for quantitative social science studies, allowing unobtrusive observation of the intersectionsand transitions obtained in online self-presentation. 
    more » « less